Abstract

Emerging evidence suggests that cognitive impairment associated with brain network disorders in people with autism could be improved with medications such as bumetanide. However, the extent to which bumetanide is effective in improving brain function in these individuals has not been adequately studied. The main purpose of this study is to investigate the nonlinear brain connectivity and topological changes in brain networks of people with autism spectrum disorders (ASD) after a three-month course of bumetanide treatment. We used electroencephalography (EEG) data of nine participants recorded during the face emotion recognition activity in two stages before and after bumetanide treatment. Brain connectivity matrix was calculated using a neural network-based estimator. Graph criteria and statistical tests have been used to determine the effects of bumetanide treatment on children and adolescents with autism. Bumetanide treatment significantly alters the brain connectivity networks based on stimuli type. Differences in brain connectivity related to the sad stimuli are more significant. The most of the significant changes of the strength graph metric was in the occipital electrodes and electrodes related to the right hemisphere. These results suggest that bumetanide may affect effective connectivity and be used a promising treatment for improving social interactions in patients with autism. It also suggests that brain connectivity patterns can be considered as a neural marker to be used in the development of new therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call