Abstract

A revolutionary idea that has gained significance in technology for Internet of Things (IoT) networks backed by WSNs is the " Energy-Efficient Cluster-Based Routing Protocol with a Secure Intrusion Detection" (EECRPSID). A WSN-powered IoT infrastructure's hardware foundation is hardware with autonomous sensing capabilities. The significant features of the proposed technology are intelligent environment sensing, independent data collection, and information transfer to connected devices. However, hardware flaws and issues with energy consumption may be to blame for device failures in WSNassisted IoT networks. This can potentially obstruct the transfer of data. A reliable route significantly reduces data retransmissions, which reduces traffic and conserves energy. The sensor hardware is often widely dispersed by IoT networks that enable WSNs. Data duplication could occur if numerous sensor devices are used to monitor a location. Finding a solution to this issue by using clustering. Clustering lessens network traffic while retaining path dependability compared to the multipath technique. To relieve duplicate data in EECRPSID, we applied the clustering technique. The multipath strategy might make the provided protocol more dependable. Using the EECRPSID algorithm, will reduce the overall energy consumption, minimize the End-to-end delay to 0.14s, achieve a 99.8% Packet Delivery Ratio, and the network's lifespan will be increased. The NS2 simulator is used to run the whole set of simulations. The EECRPSID method has been implemented in NS2, and simulated results indicate that comparing the other three technologies improves the performance measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.