Abstract

Data gathering using mobile sink (MS) based on rendezvous points (RPs) is a need in several Internet of Things (IoT) applications. However, devising energy-efficient and reliable tour planning strategies for MS is a challenging issue, considering that sensors have finite buffer space and disparate sensing rates. This is even more challenging in delay-tolerant networks, where it is more desirable to select the shortest traveling path. There exist several algorithms on MS scheduling, which are based on hierarchical protocols for data forwarding and data collection. These algorithms are lacking efficient tradeoff between the Quality-of-Service (QoS) requirements in terms of energy efficiency, reliability, and computational cost. Besides, these algorithms have shown high packet losses while jointly performing MS tour planning and buffer overflow management. To address these limitations, we propose EE-MSWSN, an energy-efficient MS wireless sensor network that reliably collects data by implementing efficient buffer management. It forms novel clustered tree-based structures to cover all the network, and select each RP based on 1) hop count; 2) number of accumulated data in each clustered tree; and 3) distance to the stationary sink. The extensive simulation results verify that the EE-MSWSN minimizes tour length for various network configurations and incurs less energy consumption while reliably gathering data without packet losses as compared with existing protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call