Abstract
The quenched Edwards-Wilkinson growth of the 1+1 interface is considered in the background of the correlated random noise. We use random Coulomb potential as the background long-range correlated noise. A depinning transition is observed in a critical driving force F[over ̃]_{c}≈0.037 (in terms of disorder strength unit) in the vicinity of which the final velocity of the interface varies linearly with time. Our data collapse analysis for the velocity shows a crossover time t^{*} at which the velocity is size independent. Based on a two-variable scaling analysis, we extract the exponents, which are different from all universality classes we are aware of. Especially noting that the dynamic and roughness exponents are z_{w}=1.55±0.05, and α_{w}=1.05±0.05 at the criticality, we conclude that the system is different from both Edwards-Wilkinson (EW) and Kardar-Parisi-Zhang (KPZ) universality classes. Our analysis shows therefore that making the noise long-range correlated, drives the system out of the EW universality class. The simulations on the tilted lattice show that the nonlinearity term (λ term in the KPZ equations) goes to zero in the thermodynamic limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.