Abstract

The use of hydrogen fuel cells as a mobile source of electricity could prove key to the future decarbonisation of heavy-duty road and marine transportation. Due to the complex interplay of various physicochemical processes in fuel cells, further development of these devices will depend on concerted efforts by researchers from various fields, who often lack in-depth knowledge of different aspects of fuel cell operation. These knowledge gaps can be filled by information that is scattered in a wide range of literature, but is rarely covered in a concise and condensed manner. To address this issue, we propose an educational-scale-bridging approach towards the modelling of most relevant processes in the fuel cell that aims to adequately describe the causal relations between the processes involved in fuel cell operation. The derivation of the model equations provides an intuitive understanding of the electric and chemical potentials acting on protons at the microscopic level and relates this knowledge to the terminology commonly used in fuel cell research, such as catalyst electric overpotential and internal membrane resistance. The results of the model agreed well with the experimental data, indicating that the proposed simple mathematical description is sufficient for an intuitive understanding of fuel cell operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call