Abstract

In this study, we hope to accomplish three aims as follows: (1) provide greater clarity regarding the nature and scope of the field of educational neuroscience, (2) propose a framework for understanding when and how neuroscientific research could be informative for educational practice, and (3) describe some examples of neuroscientific findings from the domains of reading and mathematics that are informative according to this framework. We propose that psychological models of learning-related processes should be the basis of instructional decisions, and that neuroscientific evidence in combination with traditional evidence from psychological experiments should be used to decide among competing psychological models. Our review of the neuroscientific evidence for both reading and mathematics suggests that while much has been learned over the past 20 years, there is still a 'disconnect' between contemporary psychological models that emphasize higher level skills and neuroscientific studies that focus on lower level skills. Moreover, few researchers have used neuroscientific evidence to decide among psychological models, but have focused instead on identifying the brain regions that subtend component skills of reading and math. Nevertheless, neuroscientific studies have confirmed the intrinsic relationship between reading and spoken language, revealed interesting predictive relationships between anatomical structures and reading and math disabilities, and there is the potential for fruitful collaborations between neuroscientists and psychologists in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call