Abstract

Educational Data Mining (EDM) is an evolving field with a suite of computational and psychological methods for understanding how students learn. Applying Data Mining methods to education data help us to resolve educational investigation issues. The growth of education data offers some unique advantages as well as some new challenges for education study. Some of the challenges are an improvement of student models, identify domain structure model, pedagogical support and extend educational theories. The main objective of this paper is to present the capabilities of data mining in the context of the higher educational system and their applications and progress, through a survey of literature and the classification of articles. We observed the works on investigational situation studies showed in the EDM during the recent past, in addition, we have introduced three data models based on descriptive and predictive data mining techniques. This is oriented towards students in order to recommend learners’ activities, resources, suggest path pruning and shortening or simply links that would favor and improve their learning or to educators in order to get more objective feedback for instruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.