Abstract

The success of students gives the good name for institution and it become popular. Due to the large number of student’s database it is difficult to identify the performance and activities of each student. The educational data mining is used to identify the performance and status of the students individually. In this study, the Educational Data Classification (EDC) using data mining technique and kernel ensemble classification using Support Vector Machine (SVM) based kernels like linear, polynomial, quadratic and Radial Basis Function (RBF) is discussed. Initially the data preprocessing is made to remove the raw data into understandable format. The SVM kernels like linear, polynomial, quadratic and radial basis function based ensemble classifier is used for classification of student’s data. The data mining is used for making final decision of student’s performance in class like activities and interaction with electronic learning system. The performance of the system is evaluated by kalboard 360 database. The performance of the system is made by classification accuracy of 72.52% using SVM kernel ensemble classification

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.