Abstract
Water pollution by heavy metal ions is a critical threat to public health. To remove the heavy metal pollutants from large waterbodies, we have synthesized a biocompatible, cost-effective, metal ion non-specific, and ethylenediaminetetraacetic acid (EDTA)-inspired polydentate hydrogel with exceptionally high adsorption capacity and reusability. The hydrogel was synthesized by the transamidation reaction between hydrolyzed polyacrylamide and branched polyethylenimine (BPEI). The mechanical strength of the synthesized hydrogel displayed an increasing trend with the wt % of the cross-linker (BPEI) and achieved a maximum storage modulus (Gmax') of 1093 Pa. Scanning electron microscopy revealed a porous network structure of the hydrogel (pore size: 30-70 μm), resulting in a very high swelling ratio of 5800%. The porous hydrogel manifested the maximum adsorption capacity of 482.2 mg/g when adsorbing from a mixture of metal ions (Cr3+, Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+), higher than any EDTA-grafted material known to date. The high adsorption capacity of the hydrogel was attributed to the existence of numerous EDTA-mimicking coordinating functional groups, as confirmed by X-ray photoelectron spectroscopy. In addition, the hydrogel showed the self-healing property and preserved more than 85% adsorption efficiency even after five cycles of reuse. Furthermore, the hydrogels showed no or moderate toxicity toward mammalian cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.