Abstract

In this study, a square wave voltammetric method for determination of theophylline in tablet formulation based on EDTA salt modified carbon paste electrode is presented. CV, FT-IR, and EIS results confirmed modification of the carbon paste with EDTA salt. In contrast to the unmodified carbon paste electrode, the modified carbon paste electrode showed irreversible oxidation of theophylline with considerable current enhancement. Investigation of the effect of scan rate on the Ip and Ep response of the modified electrode for theophylline revealed predominantly diffusion controlled oxidation kinetics. Under the optimized conditions, square wave oxidative peak current of theophylline in pH 7.0 PBS showed linear dependence on concentration in the range 10–200 μM with determination coefficient (R2), limit of detection, and limit of quantification of 0.99782, 0.0257 μM, and 0.0857 μM, respectively. Detection of an amount of theophylline in the analyzed tablet formulation with 1.85% error from its nominal content (120 mg/tablet) confirmed the accuracy of the developed method. Spike and interference recovery results of 98.59%, and 95.7–100%, respectively validated the applicability of the developed method for determination of theophylline content in tablet samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call