Abstract

The effects of EDTA application to heavy metal-polluted soil on phytoextraction of heavy metals, leaf anatomy, gas exchange parameters, enzyme activities of C4 carbon cycle, antioxidant defense, and active compounds of Tribulus terrestris L. were evaluated. The addition of EDTA to the soil polluted with Cd and Pb markedly increased dry weight and Pb, Zn, and Cd contents in shoots. Plants responded to the action of EDTA by an increased stomatal conductance, photosynthetic and transpiration rates, water use efficiency, chlorophyll and carotenoid contents. The activities of C4 carbon cycle enzymes simultaneously increased, thus concentrating CO2 for enhanced CO2 assimilation and providing NADPH for the antioxidant system. Antioxidants, such as ascorbate, reduced glutathione, and flavonoids, increased more in the shoots of T. terrestris after the addition of EDTA. The activities of guaiacol peroxidase, catalase, and the enzymes of the ascorbate-glutathione cycle enhanced significantly in the presence of EDTA. Increased activities of antioxidant enzymes suggest that they have some additive functions in the mechanism of metal tolerance. EDTA application lowered the activity of phenylalanine ammonia-lyase and the content of total phenols, MDA, hydrogen peroxide, dehydroascorbate, and lipid-soluble antioxidant capacity expressed as α-tocopherol. Increased levels of total radical-scavenging activity are in correspondence with the activity of water-soluble antioxidant compounds in T. terrestris tissues. The content of furostanol saponins protodioscin, prototribestin, and rutin increased as a result of EDTA addition. The results obtained allowed us to assume that applied EDTA reduced a negative heavy metal impact on puncture vine photosynthesis and antioxidant potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.