Abstract

Dropout is a well-known regularization method by sampling a sub-network from a larger deep neural network and training different sub-networks on different subsets of the data. Inspired by the dropout concept, we propose EDropout as an energy-based framework for pruning neural networks in classification tasks. In this approach, a set of binary pruning state vectors (population) represents a set of corresponding sub-networks from an arbitrary original neural network. An energy loss function assigns a scalar energy loss value to each pruning state. The energy-based model (EBM) stochastically evolves the population to find states with lower energy loss. The best pruning state is then selected and applied to the original network. Similar to dropout, the kept weights are updated using backpropagation in a probabilistic model. The EBM again searches for better pruning states and the cycle continuous. This procedure is a switching between the energy model, which manages the pruning states, and the probabilistic model, which updates the kept weights, in each iteration. The population can dynamically converge to a pruning state. This can be interpreted as dropout leading to pruning the network. From an implementation perspective, unlike most of the pruning methods, EDropout can prune neural networks without manually modifying the network architecture code. We have evaluated the proposed method on different flavors of ResNets, AlexNet, l1 pruning, ThinNet, ChannelNet, and SqueezeNet on the Kuzushiji, Fashion, CIFAR-10, CIFAR-100, Flowers, and ImageNet data sets, and compared the pruning rate and classification performance of the models. The networks trained with EDropout on average achieved a pruning rate of more than 50% of the trainable parameters with approximately < 5% and < 1% drop of Top-1 and Top-5 classification accuracy, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.