Abstract

The present research looked for ways to develop shielded nanoparticles (NPs)-drug transporters made of chitosan (CS) to enhance the bioavailability of edoxaban tosylate monohydrate (ETM) for oral administration by examining the correlation among design aspects and data from experiments using response surface methodology (RSM). ETM-loaded CS nanoparticles (ETM-CS-NPs) were developed using the ionic gelation of CS with tripolyphosphate (TPP). Utilising Zeta-sizer and scanning electron microscopy, the ETM-CS-NPs were evaluated for particle size (PS), zeta potential (ZP), surface morphology, polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Drug and polymer interactions in NPs were assessed using Fourier transform infra-red spectroscopy. The response surface approach and Design-Expert software optimised the ETM-CS-NPs. Using RSM, the effects of independent variables such as the amount of CS, the amount of TPP, and the amount of glacial acetic acid on PS, PDI and ZP were analysed. The optimal combination of PS (354.8 nm), PDI (0.509), ZP (43.7 + mV), % EE (70.3 ± 1.3) and % DL (9.1 ± 0.4) has been identified for the optimised ETM-CS-NPs. ETM-CS-NPs’ anticoagulant activity was evaluated using activated partial thromboplastin time (aPTT), prothrombin time (PT) and thrombin time (TT) assays. In conclusion, a practical and consistent method has been established, and its application has been proven in vitro, indicating its utility for future studies of the biological distribution of ETM-CS-NPs in vivo for specific antithrombotic treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.