Abstract

We show that spectral data of the Koopman operator arising from an analytic expanding circle map τ can be effectively calculated using an EDMD-type algorithm combining a collocation method of order m with a Galerkin method of order n. The main result is that if m≥δn, where δ is an explicitly given positive number quantifying by how much τ expands concentric annuli containing the unit circle, then the method converges and approximates the spectrum of the Koopman operator, taken to be acting on a space of analytic hyperfunctions, exponentially fast in n. Additionally, these results extend to more general expansive maps on suitable annuli containing the unit circle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.