Abstract

Selective etching of Si3N4 to SiO2 is essential in the semiconductor fabrication process. In particular, as the number of alternating Si3N4/SiO2 multi-layered stacks increases, selective removal of Si3N4 without loss of SiO2 becomes difficult. In this study, the dissolution of Si3N4 was demonstrated in superheated water without addition of H3PO4, which has been widely used to etch Si3N4. The dissolution rates of Si3N4 and SiO2 in the superheated water depended strongly on the concentration of OH−, and the activation energy obtained for the dissolution of Si3N4 was 72.65 ± 0.95 kJ/mol. It is believed that the attack of the partially δ+ charged Si atoms in the Si3N4 by nucleophilic OH− was the key step in the dissolution of Si3N4 in the superheated water. Because a tradeoff between the dissolution rate of Si3N4 and the Si3N4-to-SiO2 etching selectivity was observed, H2SiO3 and HF were added to HCl-based superheated water for optimization. The HCl-based superheated water with the addition of 0.005 vol% HF and 0.01 M H2SiO3 allowed successful fabrication of a horizontal SiO2 trench structure on a patterned Si3N4/SiO2 15 pair-layered stack through selective etching of Si3N4 without thinning of the SiO2 layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call