Abstract

Lithium (Li) metal anodes are essential for developing next-generation high-energy-density batteries. However, Li dendrite/whisker formation caused short-circuiting issue and short cycle life have prevented lithium metal from being viably used in rechargeable batteries. Numerous works have been done to study how to regulate the Li growth in electrochemical cycling by using external stacking forces. While it is widely agreed that stack pressure positively affects the lithium plating/stripping process, the optimized pressure range provided by different works varies greatly because of the difference in the pressure control setup. In this work, a pressure control apparatus is designed for Li metal batteries with liquid and solid-state electrolytes (SSE). With considerations of minimizing cell to cell variation, a reusable split cell and pressure load cell are made for testing electrochemical cells with high precision pressure control. The capability of the designed setup is demonstrated by studying the pressure effect on the Li plating/stripping process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call