Abstract

Polymer electrolyte membrane fuel cells provide an alternative option to fossil fuel-based energy conversion devices. However, the corrosion of fuel cell components, specifically the bipolar plates, introduces contaminants (e.g., Fe, Ni) into the membrane electrode assembly (MEA). These contaminants accelerate the ionomer degradation by acting as a Fenton’s reagent, decreasing the fuel cell’s durability. This study presents the mechanism and the diffusion media properties affecting the transport of cation contaminants into the MEA. Cation contaminant transport was studied after altering the gas diffusion layers (GDLs) wettability, emulating the GDL properties after prolonged operation, by ex situ hydrogen peroxide treatment or in situ electrochemical potential cycling. A GDL with crack-free microporous layer (MPL) showed a lower cation transport rate to the catalyst layer than MPL with cracks after both ex situ and in situ treatment. A novel GDL was developed from modification of the conventional GDL via the addition of a hydrophobic layer to the GDL substrate, which suppressed the contaminant cation transport significantly. This novel GDL also showed improved fuel cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.