Abstract
All multi-cellular organisms share the necessity to perceive damage and to employ an adequate immune response to withstand injury and infection. The role of damage-associated molecular patterns (DAMPs) in the mammalian adaptive immune system and in allograft rejection was discovered by Polly Matzinger and Walter Land (Land et al., 1994; Matzinger, 1994). These discoveries revolutionized the research into transplantation and immunity (Land et al., 2016a,b) and improved the understanding of chronic and inflammation-related diseases such as Alzheimer's disease, Diabetes, Lupus, Rheuma (Land, 2015a,b), and many forms of cancer (Land, 2015c; Candeias and Gaipl, 2016). Unfortunately, the tendency toward specialization in contemporary science, albeit allowing for an incredible increase in the efficiency at which knowledge is being generated, enhances the risk to lose the communication across disciplines. A prime example of this situation is the research into injury perception and immunity, which developed in distinct disciplines for mammals and plants. In consequence, the first application of the DAMPs concept to plants appeared 13 years after their first description for mammals (Lotze et al., 2007). Two years later, four review papers discussed the role of DAMPs and “damaged-self recognition” in plants (Boller and Felix, 2009; Heil, 2009; Metraux et al., 2009; Tor et al., 2009).
Highlights
Reviewed by: Jurriaan Ton, University of Sheffield, UK Saskia C
The role of damage-associated molecular patterns (DAMPs) in the mammalian adaptive immune system and in allograft rejection was discovered by Polly Matzinger and Walter Land (Land et al, 1994; Matzinger, 1994)
Reviews summarized the functions of DAMPs in insects (Krautz et al.) and plants (Savatin et al.), applied the “danger model” to mosquitoes (Moreno-García et al.), and discussed the role of extracellular ATP as a DAMP in plants (Tanaka et al.)
Summary
Reviewed by: Jurriaan Ton, University of Sheffield, UK Saskia C. A prime example of this situation is the research into injury perception and immunity, which developed in distinct disciplines for mammals and plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.