Abstract

Schistosomiasis is a severe parasitic disease, endemic in 74 developing countries with up to 600 million people infected and 800 million, mostly children, at risk of contracting the disease following infection predominantly with Schistosoma mansoni, Schistosoma haematobium, or Schistosoma japonicum. The disease burden is estimated to exceed 70 million disability-adjusted life-years, and leads to remarkably high YLD (years lived with disability) rates. Even more importantly, people with schistosomiasis are highly susceptible to malaria, tuberculosis, and hepatic and acquired immunodeficiency viruses. There is only one drug, praziquantel, currently available for treatment and it has high efficacy, low cost, and limited side effects. However, only 13% of the target population has received the drug, and those treated are at continuous risk of reinfection necessitating repeated drug administration and the emergence of drug-resistant parasites is a constant threat (1). Currently there is no vaccine. The a priori requirements for discovery of a vaccine formulation include the following: identification of protective key immune players in humans; characterization and isolation of target antigens; establishment of efficacy in terms of reduction of parasite burden as well as amelioration of immunopathology; establishment of safety; and finally, provision of considerable funds along with physical infrastructure and qualified personnel to carry out clinical trials.

Highlights

  • Specialty section: This article was submitted to Immunotherapies and Vaccines, a section of the journal Frontiers in Immunology

  • The target of >40% protection has been achieved with some schistosome molecules such as fatty acid binding protein (Sm14), paramyosin, calpain large subunit (Sm80), superoxide dismutase (SOD), glutathione S-transferase (GST), glyceraldehyde 3-phosphate dehydrogenase, and cysteine peptidases [2]

  • A remarkable finding in the study was the implication that type 2 (IgG1 and IgE) and not type 1-related antibodies are critical for human resistance against S. haematobium reinfection

Read more

Summary

Introduction

Specialty section: This article was submitted to Immunotherapies and Vaccines, a section of the journal Frontiers in Immunology. The a priori requirements for discovery of a vaccine formulation include the following: identification of protective key immune players in humans; characterization and isolation of target antigens; establishment of efficacy in terms of reduction of parasite burden as well as amelioration of immunopathology; establishment of safety; and provision of considerable funds along with physical infrastructure and qualified personnel to carry out clinical trials.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.