Abstract

The performance of the magnetorheological (MR) damper is determined based on the damping force of the damper which is used to reduce the unwanted vibrations in the automobile suspension system. In this study, an axisymmetric magnetorheological damper model is analyzed using ANSYS finite element (FE) analysis to simulate a distribution of magnetic field in the fluid flow region. Firstly, the materials used for the fabrication of MR damper such as SA1018 and Aluminium are used for the permeability analysis for applied current in shear mode operation. It is evident from the result that, a material with higher magnetic permeability (SA1018) gives higher magnetic flux density in the fluid flow gap. By using SA1018 material for further study the effect of increase in shear gap and shearing length of the MR damper, there is a exponential decay in the magnetic flux density in the flow gap. And finally, by using the response surface methodology optimum values are obtained for maximum magnetic flux density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.