Abstract

Music is an important source of enjoyment, learning, and well-being in life as well as a rich, powerful, and versatile stimulus for the brain. With the advance of modern neuroimaging techniques during the past decades, we are now beginning to understand better what goes on in the healthy brain when we listen, play, think, and feel music and how the structure and function of the brain can change as a result of musical training and expertise. In the healthy brain, there is already mounting evidence that a large-scale bilateral network of temporal, frontal, parietal, cerebellar, and limbic/paralimbic brain areas associated with auditory perception, language, syntactic and semantic processing, attention and working memory, semantic and episodic memory, rhythmic and motor functions, and emotions and reward underlies the processing of music (Koelsch, 2011, 2014; Zatorre and Salimpoor, 2013; Janata, 2015) and to which extent this neural network could be shaped by musical training (Kraus and Chandrasekaran, 2010; Herholz and Zatorre, 2012; Brown et al., 2015). In the field of neurology, music has traditionally been studied in the context of musical deficits (e.g., amusia; Peretz et al., 2003), music-related symptoms (e.g., musicogenic epilepsy; Maguire, 2015), cases of exceptional or preserved musical functions (e.g., singing in aphasia; Johnson and Graziano, 2015), and neurological disorders of professional musicians (e.g., musician's dystonia; Altenmuller et al., 2015). During the last decade, there has been increasing interest and progress in adopting music as a therapeutic tool in neurological rehabilitation, and many novel music-based methods have been developed to improve motor, cognitive, language, emotional, and social deficits in persons suffering from a debilitating neurological illness, ranging from childhood and adolescence [e.g., autism (Geretsegger et al., 2014), dyslexia (Flaugnacco et al., 2015)] to adulthood and old age [e.g., stroke (Sarkamo et al., 2008; Bradt et al., 2010; Rodriguez-Fornells et al., 2012; Altenmuller and Schlaug, 2015), Parkinson's disease (Nombela et al., 2013; Bloem et al., 2015), and dementia (Vink et al., 2011; Baird and Samson, 2015)]. Traditionally, the fields of music neuroscience and music therapy have progressed independently, providing separate lines of evidence for how music is processed in the healthy brain and how it can be used therapeutically. We are now finally reaching a point where these fields are starting to merge and integrate, providing novel and important information about how music is processed in the damaged or abnormal brain, how structural and functional recovery of the brain can be enhanced by music-based rehabilitation methods, and what neural mechanisms underlie the therapeutic effects of music (for a related discussion, see Magee and Stewart). In the future, this information is pivotal for increasing our understanding of how and why music works in rehabilitation and for developing more effective music-based applications that are better targeted at specific brain processes and better tailored toward the individual rehabilitation needs of patients. With these goals in mind, we launched the current Research Topic, jointly hosted by Frontiers in Human Neuroscience and Frontiers in Auditory Cognitive Neuroscience, which aimed to bring together research across multiple disciplines with a special focus on music, brain, and neurological rehabilitation. We invited researchers to present research addressing either how musical skills and attributes, such as music perception, experiencing music emotionally, or playing or singing, are affected by a developmental or acquired neurological disorder or what is the applicability, effectiveness, and mechanisms of music-based rehabilitation methods in neurological patients. We were delighted that our call was met with enthusiasm and was answered by many research groups across the world, resulting in altogether 27 papers published in Frontiers in Human Neuroscience (21 papers) and Frontiers in Auditory Cognitive Neuroscience (six papers). Twenty-three papers were Original Research Articles, three were Reviews, and one was a General Commentary. There were altogether 132 authors from 14 countries (Australia, Canada, China, Cuba, Denmark, Finland, France, Germany, Italy, Netherlands, Poland, Spain, UK, and USA), providing an interesting cross-section to the global state-of-the-art on research currently done in the field of music, neuroscience, and neurorehabilitation. Broadly classified, the papers focused on six core topics: (i) music and hearing impairment; (ii) music, rhythm, and language; (iii) music, rhythm, and movement; (iv) music, learning, and memory; (v) responsiveness to music in severe neurological disorders; and (vi) novel sound-based technological advances. Next, we will provide a brief overview of these studies.

Highlights

  • Music is an important source of enjoyment, learning, and well-being in life as well as a rich, powerful, and versatile stimulus for the brain

  • With the advance of modern neuroimaging techniques during the past decades, we are beginning to understand better what goes on in the healthy brain when we listen, play, think, and feel music and how the structure and function of the brain can change as a result of musical training and expertise

  • There is already mounting evidence that a large-scale bilateral network of temporal, frontal, parietal, cerebellar, and limbic/paralimbic brain areas associated with auditory perception, language, syntactic and semantic processing, attention and working memory, semantic and episodic memory, rhythmic and motor functions, and emotions and reward underlies the processing of music (Koelsch, 2011, 2014; Zatorre and Salimpoor, 2013; Janata, 2015) and to which extent this neural network could be shaped by musical training (Kraus and Chandrasekaran, 2010; Herholz and Zatorre, 2012; Brown et al, 2015)

Read more

Summary

The Editorial on the research topic

Brain, and Rehabilitation: Emerging Therapeutic Applications and Potential Neural Mechanisms. We are reaching a point where these fields are starting to merge and integrate, providing novel and important information about how music is processed in the damaged or abnormal brain, how structural and functional recovery of the brain can be enhanced by music-based rehabilitation methods, and what neural mechanisms underlie the therapeutic effects of music (for a related discussion, see Magee and Stewart) In the future, this information is pivotal for increasing our understanding of how and why music works in rehabilitation and for developing more effective music-based applications that are better targeted at specific brain processes and better tailored toward the individual rehabilitation needs of patients. This musician effect was stronger as the importance of pitch in the task increased, suggesting that musical training can be beneficial especially for challenging pitch perception, as in the case of the CI

MUSIC AND HEARING IMPAIRMENT
RESPONSIVENESS TO MUSIC IN NEUROLOGICAL DISORDERS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call