Abstract

The Research Topic “Multiscale lattices and composite materials:” (MLCM) is focused on the optimal design, modeling, and characterization of novel lattices, composite materials, and structures at different scales, through the control of the internal architecture of the system. A fundamental goal of this article collection is the study of mechanical metamaterials that are able to form next-generation-generation cellular solids; lattice materials, multiscale composites; and structural-scale systems. The collection took inspiration from the peculiar behaviors exhibited by structured materials at multiple scales (Bosia et al., 2018). The latter include, for example, high stiffness, strength, and toughness at extremely low densities (Meza et al., 2014), phononic band-gaps (Lu et al., 2009), sound control ability (Cummer et al., 2016); negative effective mass density (Liu et al., 2000); localized confined waves (Theocharis et al., 2013), to name but a few examples. The research reported devoted special attention to the creation of complex mechanical systems with properties derived mainly from their geometric design rather than their chemical composition (Cummer et al., 2016; Bertoldi et al., 2017). Also investigated was the use of multiscale lattices to optimally design reinforcing elements for novel composite materials (Fleck et al., 2010; Li et al., 2014). The chosen modeling and experimental approaches were able to predict and characterize the intrinsically complex mechanical behavior of the analyzed systems through multiscale techniques.

Highlights

  • Editorial on the Research TopicMultiscale Lattices and Composite Materials: Optimal Design, Modeling and Characterization

  • The Research Topic “Multiscale lattices and composite materials:” (MLCM) is focused on the optimal design, modeling, and characterization of novel lattices, composite materials, and structures at different scales, through the control of the internal architecture of the system

  • A fundamental goal of this article collection is the study of mechanical metamaterials that are able to form next-generation-generation cellular solids; lattice materials, multiscale composites; and structural-scale systems

Read more

Summary

Editorial on the Research Topic

Multiscale Lattices and Composite Materials: Optimal Design, Modeling and Characterization. Reviewed by: Marco Miniaci, Swiss Federal Laboratories for Materials Science and Technology, Switzerland. Specialty section: This article was submitted to Mechanics of Materials, a section of the journal

Frontiers in Materials
Multiscale Lattices and Composite Materials
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.