Abstract

Even before the development of the idea to exploit marine biomolecules for human needs (pharmaceuticals, cosmetics, etc.), the interest for such compounds is implicit when one ponders the astonishingly basic definition of marine biotechnology as “a natural extension of cultural practices of garnering food from the ocean” by the anthropologist Helmreich who beautifully summarizes the origins of marine biotechnology and its deep significance to human society (Helmreich, 2003). Free from any sectarian, discipline-directed bias for a particular type of molecules and, as a consequence of this inclusive unfiltered consideration of all types of molecule, is the great flexibility of the biological adaptation of marine organisms to the wide range of environmental conditions found (temperature, salinity, tides, pressure, radiation, light, etc.). Indeed this adaptation has empowered marine livings with an enormous reservoir of any type of precious biological material for both basic research and biotechnological improvements. Relative to the terrestrial well-known ecosystem, the prevalent and unknown marine environment is valued as a source of enzymes exhibiting new functions and activities to fulfill human needs (Trincone, 2013), as well as other biomolecules such as important polysaccharides which are the most abundant renewable biomaterial found in oceans. This list cannot be completed without the inclusion of small molecular weight compounds characterized by various molecular skeletons isolated from marine organisms (sponges, corals, and other marine invertebrates), which possess interesting activities. Moreover, it is still widely accepted that the assignment of precise biological functions to genes, proteins, and enzymes in marine environment is the least developed aspect.

Highlights

  • Specialty section: This article was submitted to Chemical Biology, a section of the journal Frontiers in Chemistry

  • Even before the development of the idea to exploit marine biomolecules for human needs, the interest for such compounds is implicit when one ponders the astonishingly basic definition of marine biotechnology as “a natural extension of cultural practices of garnering food from the ocean” by the anthropologist Helmreich who beautifully summarizes the origins of marine biotechnology and its deep significance to human society (Helmreich, 2003)

  • Relative to the terrestrial well-known ecosystem, the prevalent and unknown marine environment is valued as a source of enzymes exhibiting new functions and activities to fulfill human needs (Trincone, 2013), as well as other biomolecules such as important polysaccharides which are the most abundant renewable biomaterial found in oceans

Read more

Summary

Introduction

Specialty section: This article was submitted to Chemical Biology, a section of the journal Frontiers in Chemistry. Relative to the terrestrial well-known ecosystem, the prevalent and unknown marine environment is valued as a source of enzymes exhibiting new functions and activities to fulfill human needs (Trincone, 2013), as well as other biomolecules such as important polysaccharides which are the most abundant renewable biomaterial found in oceans. It is still widely accepted that the assignment of precise biological functions to genes, proteins, and enzymes in marine environment is the least developed aspect.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call