Abstract

The majority of microbes in many environments are considered “as yet uncultured” and were traditionally considered inaccessible for study through the microbiological gold standard of pure culture. The emergence of metagenomic approaches has allowed researchers to access and study these microbes in a culture-independent manner through DNA sequencing and functional expression of metagenomic DNA in a heterologous host. Metagenomics has revealed an extraordinary degree of diversity and novelty, not only among microbial communities themselves, but also within the genomes of these microbes. Metagenomic analysis can involve sequence-based or functional approaches (or a combination of both). The continuous improvements to DNA sequencing technologies coupled with dramatic reductions in cost have allowed the field of metagenomics to grow at a rapid rate. Many novel insights on microbial community composition, structure, and functional capacity have been gained from sequence-based metagenomics. Functional metagenomics has been utilized, with much success, to identify many novel genes, proteins, and secondary metabolites such as antibiotics with industrial, biotechnological, pharmaceutical, and medical relevance. Future improvements and developments in sequencing technologies, expression vectors, alternative host systems, and novel screening assays will help advance the field further by revealing novel taxonomic and genetic diversity. This Research Topic aims to showcase the utility of metagenomics to gain insights on the microbial and genomic diversity in different environments by revealing the breadth of novelty that was in the past, largely untapped. This Research Topic comprises 19 submissions from experts in the field and covers a broad range of themes and article types (Review, Methods, Perspective, Opinion, and Original Research articles). We have broadly grouped the articles under four themes; functional metagenomics, targeted metagenomics, sequence-based metagenomics, and host-associated.

Highlights

  • Specialty section: This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

  • Many novel insights on microbial community composition, structure, and functional capacity have been gained from sequencebased metagenomics

  • Future improvements and developments in sequencing technologies, expression vectors, alternative host systems, and novel screening assays will help advance the field further by revealing novel taxonomic and genetic diversity. This Research Topic aims to showcase the utility of metagenomics to gain insights on the microbial and genomic diversity in different environments by revealing the breadth of novelty that was in the past, largely untapped

Read more

Summary

Introduction

Specialty section: This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology. The emergence of metagenomic approaches has allowed researchers to access and study these microbes in a culture-independent manner through DNA sequencing and functional expression of metagenomic DNA in a heterologous host. Metagenomics has revealed an extraordinary degree of diversity and novelty, among microbial communities themselves, and within the genomes of these microbes.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.