Abstract

It is desirable to design partitioning methods that minimize the I/O time incurred during query execution in spatial databases. This paper explores optimal partitioning for two-dimensional data for a class of queries and develops multi-disk allocation techniques that maximize the degree of I/O parallelism obtained in each case. We show that hexagonal partitioning has optimal I/O performance for circular queries among all partitioning methods that use convex non-overlapping regions. An analysis and extension of this result to all possible partitioning techniques is also given. For rectangular queries, we show that hexagonal partitioning has overall better I/O performance for a general class of range queries, except for rectilinear queries, in which case rectangular grid partitioning is superior. By using current algorithms for rectangular grid partitioning, parallel storage and retrieval algorithms for hexagonal partitioning can be constructed. Some of these results carry over to circular partitioning of the data—which is an example of a non-convex region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call