Abstract
The Eulerian Editing problem asks, given a graph G and an integer k, whether G can be modified into an Eulerian graph using at most k edge additions and edge deletions. We show that this problem is polynomial-time solvable for both undirected and directed graphs. We generalize these results for problems with degree parity constraints and degree balance constraints, respectively. We also consider the variants where vertex deletions are permitted. Combined with known results, this leads to full complexity classifications for both undirected and directed graphs and for every subset of the three graph operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.