Abstract

BackgroundThe clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is increasingly being used for genome editing experiments. It is a system to add, delete and/or replace parts of a gene in situ in a time- and cost-efficient manner. The genome of many organisms has been edited using this system. We tested the CRISPR/Cas9 system in Aphanomyces invadans, an oomycete, which is the causative agent of epizootic ulcerative syndrome (EUS) in many fish species. Extracellular proteases produced by this oomycete are believed to play a role in EUS virulence.MethodsWe designed three single guide-RNAs (gRNA) to target A. invadans serine protease gene. These gRNAs were individually combined with the Cas9 to form ribo-nucleo-protein (RNP) complex. A. invadans protoplasts were then transfected with RNP complexes. After the transfection, the target gene was amplified and subjected to sequencing. Zoospores of A. invadans were also transfected with the RNP complex. Three groups of dwarf gourami (Trichogaster lalius) were then experimentally inoculated with (i) non-treated A. invadans zoospores; (ii) RNP-treated A. invadans zoospores; and (iii) autoclaved pond water as negative control, to investigate the effect of edited serine protease gene on the virulence of A. invadans in vivo.ResultsFluorescence microscopy showed sub-cellular localization of RNP complex in A. invadans protoplasts and zoospores. Sequencing results from the protoplast DNA revealed a point mutation in the target gene. A matching mutation was also detected in zoospores after similar treatment with the same RNP complex. In vivo results showed that the CRISPR/Cas9-treated A. invadans zoospores did not produce EUS clinical signs in the fish. These results were then confirmed by histopathological staining of the muscle sections using Gomori’s methenamine silver nitrate and hematoxylin and eosin stains.ConclusionsResults obtained in this study indicate that the RNP complex caused effective mutation in the target gene. This hindered the production of serine protease, which ultimately impeded the manifestation of EUS in the fish. Our methods thus establish a promising approach for functional genomics studies in A. invadans and provide novel avenues to develop effective strategies to control this pathogen.

Highlights

  • The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is increasingly being used for genome editing experiments

  • The species Aphanomyces invadans has been identified as the primary cause for epizootic ulcerative syndrome (EUS), which is an important seasonal condition implicated in mass-mortalities of cultured and wild fish in many countries [7, 8]

  • Design of A. invadans specific gRNAs Targeting a serine type protease of A. invadans [20], gRNA candidates were suggested by the gRNA design tool and further filtered for secondary structure and off-targets

Read more

Summary

Introduction

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is increasingly being used for genome editing experiments. We tested the CRISPR/Cas system in Aphanomyces invadans, an oomycete, which is the causative agent of epizootic ulcerative syndrome (EUS) in many fish species. Aphanomyces alone contains approximately 35–40 species, The species Aphanomyces invadans has been identified as the primary cause for epizootic ulcerative syndrome (EUS), which is an important seasonal condition implicated in mass-mortalities of cultured and wild fish in many countries [7, 8]. As soon as the free-swimming zoospore, the infective stage of A. invadans, finds a fish host, it germinates into vegetative non-septate hyphae, Majeed et al Parasites & Vectors (2018) 11:554 which invade the fish skin and muscular tissue and may reach the internal organs [9, 10]. The life-cycle is completed once they find new fish to invade [12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call