Abstract

Post-transcriptional maturation of plastid-encoded mRNAs from land plants includes editing by making cytidine to uridine alterations at highly specific positions; this usually restores codon identities for conserved amino acids that are important for the proper function of the affected proteins. In contrast to the rather constant number of editing sites their location varies greatly, even between closely related taxa. Here, we experimentally determined the specific pattern of editing sites (the editotype) of the plastid genome of Arabidopsis thaliana ecotype Columbia (Col-0). Based on phylogenetic analyses of plastid open reading frames, we identified 28 editing sites. Two editing events in the genes matK and ndhB seem to have evolved late during the evolution of flowering plants. Strikingly, they are embedded in almost identical sequence elements and seem to be phylogenetically co-processed. This suggests that the two sites are recognized by the same trans-factor, which could help to explain the hitherto enigmatic gain of editing sites in evolution. In order to trace variations in editotype at the subspecies level we examined two other A. thaliana accessions, Cape Verde Islands (Cvi-0) and Wassilewskija (Ws-2), for the Col-0 editing sites. Both Cvi-0 and Ws-2 possess and process the whole set of editing sites as determined in Col-0, but the consequences of RNA editing differ at one position between the ecotypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.