Abstract

In this paper, an edit detection method for forensic audio analysis is proposed. It develops and improves a previous method through changes in the signal processing chain and a novel detection criterion. As with the original method, electrical network frequency (ENF) analysis is central to the novel edit detector, for it allows monitoring anomalous variations of the ENF related to audio edit events. Working in unsupervised manner, the edit detector compares the extent of ENF variations, centered at its nominal frequency, with a variable threshold that defines the upper limit for normal variations observed in unedited signals. The ENF variations caused by edits in the signal are likely to exceed the threshold providing a mechanism for their detection. The proposed method is evaluated in both qualitative and quantitative terms via two distinct annotated databases. Results are reported for originally noisy database signals as well as versions of them further degraded under controlled conditions. A comparative performance evaluation, in terms of equal error rate (EER) detection, reveals that, for one of the tested databases, an improvement from 7% to 4% EER is achieved, respectively, from the original to the new edit detection method. When the signals are amplitude clipped or corrupted by broadband background noise, the performance figures of the novel method follow the same profile of those of the original method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.