Abstract

ABSTRACT Background: Childhood malnutrition can have devastating consequences on health, behavior, and cognition. Edible insects are sustainable low cost high protein and iron nutritious foods that can prevent malnutrition. However, it is unclear whether insect-based diets may help prevent changes to brain neurochemistry associated with malnutrition. Materials and Methods: Weanling male Sprague–Dawley rats were malnourished by feeding a low protein-iron diet (LPI, 5% protein and ∼2 ppm Fe) for 3 weeks or nourished by feeding a sufficient protein-iron diet (SPI, 15% protein 20 ppm FeSO4) for the duration of the study. Following 3 weeks of LPI diet, three subsets of the malnourished rats were placed on repletion diets supplemented with cricket, palm weevil larvae, or the SPI diet for 2 weeks, while the remaining rats continued the LPI diet for an additional 2 weeks. Monoamine-related neurochemicals (e.g. serotonin (5-HT), dopamine (DA), norepinephrine) and select monoamine metabolites were measured in the hypothalamus, hippocampus, striatum, and prefrontal cortex using Ultra High-Performance Liquid Chromatography. Results: Five weeks of LPI diets disrupted brain monoamines, most notable in the hypothalamus. Two weeks supplementation with cricket and palm weevil larvae diets prevented changes to measures of 5-HT and DA turnover in the hippocampus and hypothalamus. Moreover, these insect diets prevented the malnutrition-induced imbalance of 5-HT and DA metabolites in the hippocampus, striatum, and hypothalamus. Conclusion: Edible insects such as cricket and palm weevil larvae could be sustainable nutrition intervention to prevent behavioral and cognitive impairment associated abnormal brain monoamine activities that results from early life malnutrition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call