Abstract

Aqueous blends of microcrystalline cellulose (MCC) or methyl cellulose (MC) and corn starch with or without polyols were extruded, hot pressed and studied, after their conditioning at different relative humidities, in terms of their thermal, mechanical and water and gas permeability properties. An increase in water or polyol content showed a considerable increase in percentage elongation but also a decrease in the tensile strength of films. The presence of high cellulose contents increased the tensile strength and decreased the water vapour transmission of films. The development of crystallinity with time resulted in a decrease of both gas and water permeability. Several semiempirical models for calculation of gas permeability and tensile strength and tensile and flexural moduli were applied. The obtained values were compared to those experimentally determined and with the ones reported in the literature. On several occasions, quite significant discrepancies were found which were attributed to differences in molecular weight, percentage crystallinity and polymorphism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.