Abstract

Seawater temperatures throughout Earth's history have been suggested to illustrate a long-term cooling trend from nearly 70 °C at ∼3500 Ma to around 20 °C at ∼800 Ma. The terminal Neoproterozoic prior to the “Cambrian Explosion” is a key interval in evolutionary history, as complex multicellularity appeared with the advent of the Ediacara fauna. These organisms were likely the first that required higher levels of atmospheric and dissolved marine oxygen for their sustainability. It is known that most modern macroinvertebrates are intolerant of temperatures in excess of 45 °C. Perhaps more importantly, these high seawater temperatures limit the potential of dissolved oxygen, and therefore become an integral part of this evolutionary story. Previously, our understanding of seawater temperature during the terminal Neoproterozoic comes only from 18O/ 16O and 30Si/ 28Si ratios ascertained from a limited number of cherts. Isotopic ratio methods for assessing seawater temperatures are inherently indirect and have a wide range of oscillation. However, maximum homogenization temperatures (Th max) of primary fluid inclusions in halite provide a direct means of assessing brine temperature, and have been shown to correlate well with average maximum air temperatures. The oldest halites date to the Neoproterozoic–lower Paleozoic (∼700–500 Ma), and Ediacaran representatives can be found in Sichuan Province, China, which do preserve primary fluid inclusions for analysis via cooling nucleation methods. We utilized halite samples from the Changning-2 well, correlative to the Dengying Formation (551–542 Ma), to provide a direct assessment of terminal Neoproterozoic seawater temperature. Our measurements indicate that seawater temperatures where these halites formed are highly similar to tropical Phanerozoic seawater temperature estimates. From compiled paleotemperature data, the decline in seawater temperatures over the course of the Proterozoic, accompanied by the reduction of seawater salinity with the sequestration of salt in massive halite deposits in the Neoproterozoic, allowed the ocean system to accumulate more dissolved oxygen, and potentially paved the way for the evolutionary innovation of complex multicellularity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call