Abstract

In the rapidly developing drone industry, drone use has led to a series of safety hazards in both civil and military settings, making drone detection an increasingly important research field. It is difficult to overcome this challenge with traditional object detection solutions. Based on YOLOv8, we present a lightweight, real-time, and accurate anti-drone detection model (EDGS-YOLOv8). This is performed by improving the model structure, introducing ghost convolution in the neck to reduce the model size, adding efficient multi-scale attention (EMA), and improving the detection head using DCNv2 (deformable convolutional net v2). The proposed method is evaluated using two UAV image datasets, DUT Anti-UAV and Det-Fly, with a comparison to the YOLOv8 baseline model. The results demonstrate that on the DUT Anti-UAV dataset, EDGS-YOLOv8 achieves an AP value of 0.971, which is 3.1% higher than YOLOv8n’s mAP, while maintaining a model size of only 4.23 MB. The research findings and methods outlined here are crucial for improving target detection accuracy and developing lightweight UAV models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.