Abstract
A valid Edgeworth expansion is established for the limit distribution of density-weighted semiparametric averaged derivative estimates of single index models. The leading term that corrects the normal limit varies in magnitude, depending on the choice of bandwidth and kernel order. In general this term has order larger than the n−1/2 that prevails in standard parametric problems, but we find circumstances in which it is O(n−1/2), thereby extending the achievement of an n−1/2 Berry-Esseen bound in Robinson (1995a). A valid empirical Edgeworth expansion is also established. We also provide theoretical and empirical Edgeworth expansions for a studentized statistic, where some correction terms are different from those for the unstudentized case. We report a Monte Carlo study of finite sample performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.