Abstract

We study mesoscopic conductance fluctuations in the metallic phase of the integer quantum Hall effect. We derive effective boundary conditions for the diffuson propagator which incorporate the edge-state transport along the sample boundaries. It is shown that the presence of edge states leads to a resonance structure in the conductance fluctuations which occurs as the Fermi level moves across the band of extended states. The result of this analytic treatment is consistent with that of our numerical simulations and can be tested experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call