Abstract

We prove that the edge-reinforced random walk on the ladder ℤ×{1,2} with initial weights a>3/4 is recurrent. The proof uses a known representation of the edge-reinforced random walk on a finite piece of the ladder as a random walk in a random environment. This environment is given by a marginal of a multicomponent Gibbsian process. A transfer operator technique and entropy estimates from statistical mechanics are used to analyze this Gibbsian process. Furthermore, we prove spatially exponentially fast decreasing bounds for normalized local times of the edge-reinforced random walk on a finite piece of the ladder, uniformly in the size of the finite piece.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.