Abstract

Two-dimensional (2D) conjugated aromatic networks (CAN) have been fabricated by ball milling of polymeric cobalt phthalocyanine precursors edge-functionalized with different aromatic acid anhydride substituents. The optimal CAN, obtained by using tetraphenylphthalic anhydride, consists of uniform and thin (2.9 nm) layers with a high BET surface (92 m2 g-1), resulting in well-defined Co-N4 active sites with a high degree of exposure. Thence, this material exhibits excellent electrocatalytic oxygen reduction reaction (44 mA mgcat.-1). Compared to a benchmark Pt/C catalyst, this value denotes 1.2- and 6.0-fold enhancements, respectively, in terms of the mass of Pt and total Pt/C. When utilized as air electrode catalysts in Zn-air batteries, this material provides a maximum areal power density (137 mW cm-2) and mass power density (0.68 W mgcat.-1), values which also clearly surpass those of benchmark Pt/C catalyst. This support-free and pyrolysis-free strategy developed in this work delivers a novel route for the applications of 2D materials in clean energy conversion and storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call