Abstract

The class of k-ary n-cubes represents the most commonly used interconnection topology for parallel and distributed computing systems. In this paper, we consider the faulty k-ary n-cube with even k ≥ 4 and n ≥ 2 such that each vertex of the k-ary n-cube is incident with at least two healthy edges. Based on this requirement, we investigate the fault-tolerant capabilities of the k-ary n-cube with respect to the edge-bipancyclicity. We prove that in the k-ary n-cube Qnk, every healthy edge is contained in fault-free cycles of even lengths from 6 to |V(Qnk)|, even if the Qnk has up to 4n − 5 edge faults and our result is optimal with respect to the number of edge faults tolerated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.