Abstract

Mango production is a prominent tropical fruit industry worldwide. However, outdoor mango cultivation is susceptible to crop damage caused by insect pests and harsh environmental conditions. Integrated pest management (IPM) has emerged as a proposed solution to this problem. IPM utilizes data-driven and environmentally-friendly methods to suppress insect pest populations. Nevertheless, the collection of insect pest population data remains a laborious process, necessitating automation. This paper presents an image-based monitoring system to automatically record insect pest populations and environmental conditions in mango orchards. The system comprises solar-powered sensor nodes capable of periodically acquiring and analyzing sticky paper trap images. A modular deep learning-based algorithm was developed to detect and classify insect pests into seven classes, including major insect pests of mango such as thrips, mango leafhopper, and oriental fruit fly, with an average classification F1-score of 0.96. Unlike other insect counting algorithms, the algorithm reliably classifies insect pests according to different taxonomic levels even in non-laboratory environments. The monitoring system was tested and deployed in a remote mango orchard for over two years. The collected spatiotemporal information was analyzed to demonstrate the benefits of using the proposed system and recommend new IPM strategies. Temporal data analysis revealed a significant decrease in the count of selected insect pests after using the system, enabling identification of insect hotspots through statistical methods. This work presents a breakthrough in hardware and software solutions for developing smarter insect pest monitoring systems, leading to better IPM strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.