Abstract

Blind image deconvolution, i.e., estimating a blur kernel k and a latent image x from an input blurred image y, is a severely ill-posed problem. In this paper we introduce a new patch-based strategy for kernel estimation in blind deconvolution. Our approach estimates a “trusted” subset of x by imposing a patch prior specifically tailored towards modeling the appearance of image edge and corner primitives. To choose proper patch priors we examine both statistical priors learned from a natural image dataset and a simple patch prior from synthetic structures. Based on the patch priors, we iteratively recover the partial latent image x and the blur kernel k. A comprehensive evaluation shows that our approach achieves state-of-the-art results for uniformly blurred images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.