Abstract

In this paper, we proposed an edge weight method for performing a community detection on mixed scale-free networks.We use the phrase “mixed scale-free networks” for networks where some communities have node degree that follows a power law similar to scale-free networks, while some have node degree that follows normal distribution. In this type of network, community detection algorithms that are designed for scale-free networks will have reduced accuracy because some communities do not have scale-free properties. On the other hand, algorithms that are not designed for scale-free networks will also have reduced accuracy because some communities have scale-free properties. To solve this problem, our algorithm consists of two community detection steps; one is aimed at extracting communities whose node degree follows power law distribution (scale-free), while the other one is aimed at extracting communities whose node degree follows normal distribution (non scale-free). To evaluate our method, we use NMI — Normalized Mutual Information — to measure our results on both synthetic and real-world datasets comparing with both scale-free and non scale-free community detection methods. The results show that our method outperforms all other based line methods on mixed scale-free networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.