Abstract

We show that vortex matter, that is, a dense assembly of vortices in an incompressible two-dimensional flow, such as a fast rotating superfluid or turbulent flows with signlike eddies, exhibits (i)a boundary layer of vorticity (vorticity layer) and (ii)a nonlinear wave localized within the vorticity layer, the edge wave. Both are solely an effect of the topological nature of vortices. Both are lost if vortex matter is approximated as a continuous vorticity patch. The edge wave is governed by the integrable Benjamin-Davis-Ono equation, exhibiting solitons with a quantized total vorticity. Quantized solitons reveal the topological nature of the vortices through their dynamics. The edge wave and the vorticity layer are due to the odd viscosity of vortex matter. We also identify the dynamics with the action of the Virasoro-Bott group of diffeomorphisms of the circle, where odd viscosity parametrizes the central extension. Our edge wave is a hydrodynamic analog of the edge states of the fractional quantum Hall effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call