Abstract

The elastic properties of edges are among the most fundamental properties of finite two-dimensional (2D) crystals. Using a combination of the first-principles density functional theory calculations and a continuum elasticity model, we present an efficient technique to determine the edge stresses of non-stoichiometric orientations in multicomponent 2D crystals. Using BN and MoS2 as prototypical examples of 2D binary monolayers with threefold in-plane symmetry, we unambiguously compute unique edge stresses of commonly observed non-stoichiometric edges. Our results show that the edge stresses for these structurally distinct orientations can differ significantly from the average values that have been typically reported to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call