Abstract
Woven glass-epoxy laminates are used as nonmetallic components at low temperatures in magnetic fusion energy structures. Previous damage studies on G-10CR and G-11CR cryogenic grade woven laminates revealed that most of the damage occurred in the laminated interior. An existing, generalized plane strain, finite element model was modified to predict stress states at the laminate interior and free edges. Finite element results demonstrated that the weave geometry reduces edge stresses at low temperatures. Delamination edge stresses in woven laminates are more sensitive to small changes in temperature than those in nonwoven laminates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.