Abstract

We show that one-dimensional quasiperiodic optical lattice systems can exhibit edge states and topological phases which are generally believed to appear in two-dimensional systems. When the Fermi energy lies in gaps, the Fermi system on the optical superlattice is a topological insulator characterized by a nonzero topological invariant. The topological nature can be revealed by observing the density profile of a trapped fermion system, which displays plateaus with their positions uniquely determined by the ration of wavelengths of the bichromatic optical lattice. The butterflylike spectrum of the superlattice system can be also determined from the finite-temperature density profiles of the trapped fermion system. This finding opens an alternative avenue to study the topological phases and Hofstadter-like spectrum in one-dimensional optical lattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.