Abstract

Mobile edge computing (MEC) is a network architecture that takes advantage of cloud computing features (such as high availability and elasticity) and makes use of computational resources available at the edge of the network in order to enhance the mobile user experience by decreasing the service latency. MEC solutions need to dynamically allocate the requests as close as possible to their users. However, the request placement depends not only on the geographical location of the servers, but also on their requirements. Based on this fact, this paper proposes a stochastic Petri net (SPN) model to represent an MEC scenario and analyse its performance, focusing on the parameters that can directly impact the service mean response time (MRT) and resource utilisation level. In order to present the applicability of our work, we propose three case studies with numerical analysis using real-world values. The main objective is to provide a practical guide to help infrastructure administrators to adapt their architectures, finding a trade-off between MRT and level of resource usage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.