Abstract

This work considers sequential edge-promoting Bayesian experimental design for (discretized) linear inverse problems, exemplified by X-ray tomography. The process of computing a total variation type reconstruction of the absorption inside the imaged body via lagged diffusivity iteration is interpreted in the Bayesian framework. Assuming a Gaussian additive noise model, this leads to an approximate Gaussian posterior with a covariance structure that contains information on the location of edges in the posterior mean. The next projection geometry is then chosen through A-optimal Bayesian design, which corresponds to minimizing the trace of the updated posterior covariance matrix that accounts for the new projection. Two and three-dimensional numerical examples based on simulated data demonstrate the functionality of the introduced approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.