Abstract
Nematic colloids exhibit a large diversity of topological defects and structures induced by colloidal particles in the orientationally ordered liquid crystal host fluids. These defects and field configurations define elastic interactions and medium-mediated self-assembly, as well as serve as model systems in exploiting the richness of interactions between topologies and geometries of colloidal surfaces, nematic fields, and topological singularities induced by particles in the nematic bulk and at nematic-colloidal interfaces. Here we demonstrate formation of quarter-strength surface-pinned disclinations, as well as a large variety of director field configurations with splitting and reconnections of singular defect lines, prompted by colloidal particles with sharp edges and size large enough to define strong boundary conditions. Using examples of faceted ring-shaped particles of genus g=1, we explore transformation of defect lines as they migrate between locations in the bulk of the nematic host to edge-pinned locations at the surfaces of particles and vice versa, showing that this behavior is compliant with topological constraints defined by mathematical theorems. We discuss how transformation of bulk and surface defect lines induced by faceted colloids can enrich the diversity of elasticity-mediated colloidal interactions and how these findings may impinge on prospects of their controlled reconfigurable self-assembly in nematic hosts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.