Abstract

Materials with competitive spin interactions can show multiple quantum magnetic states under external manipulation, which is important for spin-related research and applications. Although the magnetism in graphene nanoribbons has been intensively studied, robust spin interactions have not been reported. Here, we explored graphene nanoribbons modified with Ti and V atomic chains that show competitive spin interactions and robust spiral magnetism. On the basis of first-principles calculations, we systematically investigate the possibility of inducing robust and competitive magnetic ordering in graphene nanoribbons through transition-metal (TM) atomic chain decoration (denoted as TM-ZGNR, TM = Ti–Co). On the basis of the Heisenberg XY model including nearest-neighbor (NN) and next-nearest-neighbor (NNN) magnetic interactions, Ti-ZGNR and V-ZGNR are predicted to have spiral magnetic order due to spin frustration. By Monte Carlo simulations, the Neel temperatures for Ti-ZGNR and V-ZGNR are estimated to be 45 a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.