Abstract

In recent years, there has been a paradigm shift in Internet of Things (IoT) from centralized cloud computing to edge computing (or fog computing). Developments in ICT have resulted in the significant increment of communication and computation capabilities of embedded devices and this will continue to increase in coming years. However, existing paradigms do not utilize low-level devices for any decision-making process. In fact, gateway devices are also utilized mostly for communication interoperability and some low-level processing. In this paper, we have proposed a new computing paradigm, named Edge Mesh, which distributes the decision-making tasks among edge devices within the network instead of sending all the data to a centralized server. All the computation tasks and data are shared using a mesh network of edge devices and routers. Edge Mesh provides many benefits, including distributed processing, low latency, fault tolerance, better scalability, better security, and privacy. These benefits are useful for critical applications, which require higher reliability, real-time processing, mobility support, and context awareness. We first give an overview of existing computing paradigms to establish the motivation behind Edge Mesh. Then, we describe in detail about the Edge Mesh computing paradigm, including the proposed software framework, research challenges, and benefits of Edge Mesh. We have also described the task management framework and done a preliminary study on task allocation problem in Edge Mesh. Different application scenarios, including smart home, intelligent transportation system, and healthcare, are presented to illustrate the significance of Edge Mesh computing paradigm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.